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ABSTRACT

The self-parking system is an important component of self-

driving vehicles. Such a system needs to detect and locate the

parking-slots from surround-view images, and then guide the

vehicle to the designated parking-slot. In the real world, the

appearances and environmental conditions of parking-slots

can be rich and varied. Thus, to train the parking-slot detec-

tion model, it is necessary to collect and label a huge quan-

tity of surround-view images covering as many real cases as

possible. Such a process is cumbersome and costly, and will

be repeated whenever encountering an unseen parking condi-

tion that is quite different from the ones covered by existing

training set. To this end, in this paper we propose an exten-

sible pipeline, namely FakePS, to assist parking-slot detec-

tion model training by making use of synthetic data. Specifi-

cally, with FakePS, we can first build various simulated park-

ing scenes and collect labeled surround-view images auto-

matically. Besides, we resort to pixel-level domain adapta-

tion strategies to enhance the realism of the synthetic images

using unlabeled real images while preserving their label in-

formation. The efficacy of FakePS has been corroborated by

experimental results.

Index Terms— Self-parking system, parking-slot detec-

tion, learning by synthesis, domain adaptation, image realism

enhancement

1. INTRODUCTION

As part of the self-parking systems, the accuracy of the

parking-slot detection model is very important. In order to

improve the detection accuracy, a large amount of data must

be prepared during the training phase. However, the variety of

parking-slots, different ground textures or lighting conditions

will affect the performance of the detection model, so it is not

practical to build a training set covering all situations from the

beginning. Having investigated the literature, we find that in

the field of parking-slot detection, although the methods are

diverse, they are all limited by real-world datasets. In other
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Fig. 1. (a) is a screenshot of the built-up Unity parking

scenes. (b) and (c) are examples of surround-view images

with parking-slots collected from built-up scenes.

words, the training data cannot cover all possible scenarios.

These methods often collect certain training data and test the

performance under a limited number of test samples. Once

new test conditions are encountered, such as rainy days or

brick roads, their performance will be compromised.

For the above reasons, whenever a new parking scene ap-

pears, it is necessary to use the experimental vehicle to col-

lect a large number of surround-view images of the specified

scene. It is even more time-consuming and laborious to man-

ually label the collected images with parking-slot informa-

tion, and finally retrain the detection model. This entire pro-

cess may take more than one week. We find that although

ps2.0 [1], the benchmark dataset in this field, contains 12,165
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images, it still cannot cover all parking conditions.

In this work, we attempt to fill the aforementioned re-

search gaps to some extent, that is, to train the model with

synthetic images instead of real images. In order to obtain

synthetic images, we built some scalable parking scenes in

Unity, covering various weather (sunny, cloudy, rainy, etc.),

pavement materials (cement, bricks, waterlogged, etc.) and

parking-slot types (right-angle, slanted, etc.). A screenshot

of the built scenes and some sample collected surround-view

images are shown in Fig. 1. By applying unsupervised pixel-

level domain adaptation technology, the realism of the syn-

thetic images is further improved, which makes the parking-

slot detection accuracy of the models for new scenes further

increase. Our contributions are summarized as follows:
• We are the first to train parking-slot detection mod-

els with synthetic images instead of the expensive

real ones. We propose an extensible pipeline, namely

FakePS, to assist parking-slot detection model train-

ing by making use of synthetic data. The flowchart of

FakePS is shown in Fig. 2. When an unseen parking

condition appears, FakePS allows us to easily obtain the

corresponding synthetic data and retrain the parking-

slot detection model. The pipeline eliminates cumber-

some data collection and labeling.

• To complement the scenes that are not covered by the

existing datasets, a large number of simulated park-

ing scenes have been built. These scenes include var-

ious weather conditions, road textures, and parking-

slot types. The scenes can be combined with each

other. By traversing all combinations, the number of

scenes exceeds 120. We collect surround-view images

in these scenes and corresponding parking-slot annota-

tions. With these collected images, we build a synthetic

parking-slot dataset that covers 17 major scenes with

over 23,000 images. Besides, these scenes are extensi-

ble, and new scenes can be obtained by simple modifi-

cation.

• In addition, we enhanced the realism of these images

by applying pixel-level domain adaptation strategies.

A customized loss function makes the image more re-

alistic while preserving its parking-slot annotation af-

ter transformation. More importantly, the performance

of the parking-slot detection model can be further im-

proved after using the refined images compared to that

of the model trained with the synthetic ones.

2. RELATED WORK

Vision-based parking-slot detection. Parking space detec-

tion methods include free-space-based ones and vision-based

ones. The free-space-based approaches [2, 3, 4, 5, 6] locate

the target parking position by identifying sufficient free space

between adjacent vehicles. They usually depend on vehicles

that have already parked, so their application is limited and

not practical. In contrast, vision-based ones have been widely

studied by scholars for their superior performance.

The vision-based parking-slot detection approaches can

be divided into three categories, namely user interaction ones,

line-based ones, and point-based ones. User interaction ap-

proaches [7] require manual operation, and they are not fully

automatic. Line-based detection methods focus on finding

marking-lines [8, 9, 10]. They use line fitting algorithms to

detect marking-lines and then distinguish the entrance-lines

and separating-lines by their geometric relations. In prac-

tice, these approaches are sensitive to other edges (such as

the edges of the car) in the surround-view image, resulting

in unsatisfactory performance. Point-based methods first pre-

dict the locations of marking-points and then, for each pair

of marking-points, determine if they can form an entrance-

line of a parking-slot. Low-level point-based approaches rely

on traditional point detection methods like the Harris Corner

detection algorithm [11, 12] or a boosting decision tree [13].

DeepPS is the first to predict the marking-points and their pat-

terns with deep convolutional neural networks [1]. After that,

DMPR-PS proposed a parking-slot detection method based

on directional marking-point regression [14]. DeepPS and

DMPR-PS have achieved better performance than previous

methods. However, their training data and test data are lim-

ited to ps2.0 [1], and they do not always achieve good results

in new test data.

Unsupervised image to image translation is a branch of

domain adaptation. It aims to learn a model that maps one

type of images to another without pair supervision and re-

tains some relevant features. This task can be traced back to

Unsupervised Image Translation by Resales et al. [15], who

employed a Bayesian model with a prior based on a patch-

based Markov random field obtained from the source image.

More recently, the methods based on generative adversar-

ial networks (GANs [16]) have become the main solution to

unsupervised image to image translation problems. Cycle-

GAN [17] and DualGAN [18] proposed a cycle consistency

loss that attempts to preserve the input image after a cycle of

transformation (forward and backward). There are also some

methods tried to preserve pixel values [19, 20] or high level

features [21] while translating images. Liu et al. proposed

UNIT [22] to solve this problem, which is based on varia-

tional autoencoders (VAEs). Assuming that both encoders

share the same latent space, UNIT enforces weight sharing

between the last few layers of the encoders and between the

first few layers of the generators. Some of these methods have

achieved impressive image translation results, but few of them

use the translation results for a specific computer vision task.

3. PARKING SCENES SIMULATION AND DATA
COLLECTION

Before building the scenes in Unity, we need to prove the

feasibility of this solution. As we know, the input to the
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Fig. 2. The flowchart of FakePS. We first get the synthetic images of the specific built-up scenes, and then use the refiner

network to enhance the realism of the synthetic images. The detector is finally trained with the mixed dataset that includes real

images and synthetic (or refined) ones.
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Fig. 3. Simplified surround-view image acquisition model,

in which the surround-view images are directly captured by a

wide-angle virtual camera.

parking-slot detection model is a surround-view image. The

purpose of generating a surround-view image is to get a sim-

ilarity transformation from the ground to the image, which

means the transformation preserves the similarity ratio of ob-

jects [23]. Thus the parking-slot detected in the image can be

conveniently found in the real world according to the similar-

ity ratio.

To be more specific, we construct a 3D Cartesian coor-

dinate system based on the right-hand rule, whose XY -plane

coincides with the ground plane and the positive Z-axis points

up. This coordinate system is called the world coordinate sys-

tem, abbreviated as WCS. Based on the above description,

Suppose there is a point P on the ground plane. After projec-

tion, its image in the surround-view is P ′. The coordinates of

P in the WCS are (X,Y, 0)� while the coordinates of P ′ in

the image coordinate system (ICS) are (u, v)�. The relation-

ship between (X,Y, 0)� and (u, v)� can be expressed as:

(u, v)� = (
X

s
,
Y

s
)� (1)

where s represents the similarity ratio.

Fig. 3 illustrates a simplified model of how to collect

surround-view images in this work, where O represents the

optical center of the virtual camera and Zc represents the dis-

tance from the optical center to the ground. In this model,

surround-view images are taken directly by a vertically down-

ward wide-angle camera. However, in practice, the surround-

view image is usually formed by stitching images captured by

four car-mounted cameras. Then the question arises, whether

the “surround-view image” captured by a wide-angle camera

overhead also preserves the similarity ratio?

The homogeneous coordinates of P in WCS are denoted

by Pw. After projection, the homogeneous coordinates of cor-

responding point P ′′ in the “surround-view” ICS are denoted

by Puv . According to the pinhole camera model [24], Puv is

given by:

ZPuv = Z

⎡
⎣
u′

v′

1

⎤
⎦ = KTPw (2)

where Pw equals (X,Y, 0, 1)�, T is the camera extrinsic ma-

trix, K is the camera intrinsic matrix and Z is the normal-

ization coefficient. Note that the latter formula implies a con-

version from homogeneous to non-homogeneous coordinates.
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Fig. 4. Virtual marking-lines. The first row is T-shaped

marking-lines, the second row is L-shaped ones, and the third

row is I-shaped ones.

Since the virtual camera is very accurate, T and K satisfy:

T =

⎡
⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1 Zc

0 0 0 1

⎤
⎥⎥⎦ ,K =

⎡
⎣
f 0 0
0 f 0
0 0 1

⎤
⎦ (3)

where Zc is the height of the optical center O mentioned be-

fore, and f is the focal length of the camera. Substituting

expressions for T and K into Eq. 2, we obtain:

Puv = [u′, v′, 1]� = [
fX

Zc
,
fY

Zc
, 1]� (4)

In the end, we get a simple form, where Zc

f is the similar-

ity ratio, which means that capturing surround-view images

by a wide-angle camera is feasible. We can adjust the height

or focal length of the camera to achieve the same effect as the

real surround-view image.

To create the synthetic dataset, there are three main steps:

Firstly, create all assets we need, such as various types

of road texture maps, various objects (speed bumps, traffic

cones, trees, street lights, etc.) that may appear in parking

scenes, and of course, car models. Among these assets, the

model and texture of the marking-line are particularly impor-

tant since they are the patterns directly learned by the parking-

slot detector. As shown in Fig. 4, one of the benefits of syn-

thesizing marking-lines by computer is that we can adjust the

size and angle of the marking-lines arbitrarily.

Secondly, use these assets to build each scene. By ad-

justing the intensity and orientation of the light source, the

strength of the shadows, the intensity of the environment

lighting, we can simulate scenes of the sunny, cloudy and

night. By changing texture maps, we can simulate various

road surfaces. Furthermore, by applying a customized shader

and particle system, scenes of flooded road or rainy condition

can also be simulated. Don’t forget to put some objects in the

scene to make it more realistic. For example, in a real park-

ing lot, there should be some parked vehicles and shadows

cast by trees. The final number of scenes can be more than

120 kinds based on the combination of weather conditions,

pavement materials, parking-slot types, etc.

Fig. 5. User interface of the Unity project.

Thirdly, capture surround-view images automatically us-

ing scripts. Fig. 5 is the user interface of this Unity project.

As shown in the figure, we can switch freely between scenes

through the four buttons in the upper left. The lower right

corner is a thumbnail of the surround-view image that can

be collected at the current position. Through the world coor-

dinates of marking-points and the matrices of the camera, we

can determine whether each marking-point can be seen by the

wide-angle camera. If the answer is yes, record the parking-

slot information and generate the label file.

Two things need to be noticed here. First, the virtual ex-

perimental vehicle is not rendered while its shadow is ren-

dered. This is because the vehicle is located directly below

the camera as is shown in Fig. 3. Due to perspective, it will

occupy a large area in the center of surround-view, which is

against the intention. Secondly, the height of the camera must

be slightly lower than the height of the car, which is about

1.2 meters. Eq. 4 shows that by adjusting Zc

f , the similarity

ratio can be the same as that of the real surround-view im-

age. However, since not all objects are on the ground plane,

such as traffic cones and other vehicles, there is a parallax

between the collected surround-view image and the real one.

For the above reason, strictly, we need to place the virtual

camera close to the real car-mounted cameras to reduce par-

allax. Therefore, we choose a fixed camera height Ẑc (1.2
meters) and adjust the camera focal length f to obtain the re-

quired similarity ratio.

4. REALISM ENHANCEMENT WITH
PARKING-SLOT CONSTANCY

Although synthetic images can be directly used to train de-

tection models, there is still a gap between the distribution of

the synthetic images and the real ones. To bridge the gap, a
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(a) (b)

Fig. 6. (a) is a sample of surround-view image, and (b) is the

corresponding mask.

parking-slot constancy approach is proposed, which can add

realism to the synthetic images. The parking-slot information

of the image must be strictly unchanged after image transla-

tion so that the output image can still be directly used to train

the detection network.

Since the semantic information of each object in Unity

is clear, we can simply get the mask of the marking-lines in

each surround-view image. Specifically, while rendering each

surround-view image, we render a binary image containing

only the marking-lines as the mask as is shown in Fig. 6.

We adopt the architecture for our realism enhancement

networks from Zhu et al. [17] who have shown impressive

results for unpaired image translation. Our goal is to learn a

mapping function G from synthetic image domain X to real

image domain Y . Assuming the set of masks of surround-

view images is M , the objective of parking-slot constancy

can be expressed as:

Lconst(G,X,M) = E[‖(G(x)− x)�Mx‖1] (5)

where � denotes the entrywise product, x ∈ X and Mx rep-

resents the mask of x, which is a binary matrix. This ob-

jective function drives the pixel value of the generated image

G(x) in the mask area to be consistent with x. Assuming F
is the mapping function from Y to X and DX , DY are the

discriminator for F and G, respectively, the full objective can

be expressed as:

L(G,F ) = LGAN (G,DY , X, Y )

+ LGAN (F,DX , Y,X)

+ λ1Lcyc(G,F )

+ λ2Lconst(G,X,M)

(6)

where LGAN and Lcyc are the traditional GAN loss and cycle

consistency loss, respectively; λ1 and λ2 control the relative

weights of loss terms. The details of LGAN and Lcyc can be

found in [17].

With the advantage of the parking-slot constancy loss, we

can get images with improved realism while retaining its an-

notation completely.

Table 1. Synthetic image experimental results.

method training set precision recall

DeepPS [1]
ps2.0 97.10% 90.48%

ps2.0 + synthetic data 97.14% 92.87%

DMPR-PS [14]
ps2.0 97.06 % 92.29%

ps2.0 + synthetic data 97.22% 94.92%

Table 2. Refined image experimental results.

method training set precision recall

ps2.0 95.10% 89.87%

DeepPS [1] ps2.0 + synthetic data 95.17% 93.27%

ps2.0 + refined data 95.25% 94.19%

ps2.0 95.03% 93.77%

DMPR-PS [14] ps2.0 + synthetic data 95.08% 96.44%

ps2.0 + refined data 95.33% 97.39%

5. EXPERIMENTAL RESULTS

To evaluate the efficacy of the pipeline FakePS, we used the

benchmark dataset ps2.0 established by Zhang et al. [1]. It is

the largest dataset in the field of vision-based parking-slot de-

tection, comprising 12,165 surround-view images collected

from typical indoor and outdoor parking sites. We trained

two representative detection models, DeepPS and DMPR-

PS, with additional synthetic or refined images, and observed

whether their performance was improved. The architecture of

DeepPS and DMPR-PS can be found in [1, 14].

Synthetic image experiments. After careful analysis of

ps2.0, we found that there are few brick-paved scenes in

ps2.0. To this end, we collected 2,954 synthetic surround-

view images from the brick-paved scenes as the training set.

We trained the networks on ps2.0 and ps2.0 combined with

synthetic data, respectively. Except for the training set, all

training settings were consistent with the original DMPR-PS.

We used Adam optimizer with 10−4 as the initial learning

rate. We trained the networks on Nvidia Titan Xp with a

batch size of 24 for 12 epochs. Besides, we carefully la-

beled over 400 surround-view images of brick-paved streets

and combined these images with the original ps2.0 test set

as the new test set. We adjusted the probability threshold to

make the precision of the two models higher than 97%. After

we trained the models with the synthetic images, the recall

of DeepPS and DMPR-PS increased by 2.39% and 2.63%,

respectively. This indicates that after using synthetic images,

the performance of DeepPS and DMPR-PS on new scenes can

be improved.

Refined image experiments. We removed indoor images

from ps2.0, for a total of 2,209 images and then trained the

detector on the left images. It can be expected that the perfor-

mance of the detector is relatively poor because the model has

never seen an indoor parking-slot during the training phase.

Our goal is to use synthetic images and refined images to

improve the performance of the detection model. Just like

the flowchart in Fig. 2, firstly, we collected 2,190 synthetic
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surround-view images from the indoor scenes. Then we col-

lected 2,477 real surround-view images with experimental

cars. These images did not need to be manually labeled or

even include parking-slots, as long as they were collected

from indoor scenes. Finally, we trained DeepPS and DMPR-

PS on ps2.0, ps2.0 combined with synthetic data and ps2.0

combined with refined data, respectively. Similarly, except

for the training set, all training settings were consistent with

the original DMPR-PS. The final models were evaluated on

the original test set of ps2.0. The experimental results in Ta-

ble 2 show that, by training with the extra refined images, the

type I errors (when the parking-slot is true but is rejected) of

DeepPS and DMPR-PS were reduced by 42.65% and 58.11%
with the precision over 95%.

These experimental results suggest that our solution can

alleviate the problem of insufficient training data in some

scenes to a certain extent. It can not only improve the per-

formance of detection models in new scenes but also avoid

the pain of cumbersome data collection and annotation.

6. CONCLUSION

In this paper, a pipeline named FakePS is proposed to im-

prove the performance of parking-slot detection models in

new scenes not covered by the real training set. This pipeline

allows us to collect a large number of synthetic surround-view

images in the scenes of Unity. The synthetic images are then

refined with the unlabeled real images while the parking-slots

are preserved by our proposed parking-slot constancy loss.

The experimental results show that FakePS is effective. We

plan to study the effect of the synthetic dataset in complex

parking scenes in future work.
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